Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels

Eric L. Petersen

Department of Mechanical Engineering
Texas A&M University

2011 University Turbine Systems Research Workshop
Ohio State University, Columbus, OH
25 October, 2011

Project Overview

First Year of Three-Year Project is Complete

Project Highlights:

- 1. Duration: Oct. 1, 2010 Sept. 30, 2013
- 2. DOE NETL Award DE-FE0004679
- 3. Budget: \$501,712 DOE + \$125,500 Cost Share
- 4. Principal Investigator: Dr. Eric L. Petersen
- 5. Participating Organizations:
 - Rolls-Royce (Dr. Gilles Bourque)
 - The Aerospace Corporation (Dr. Mark Crofton)
 - Trinity College (Dr. John Mertens)

Project Overview

This Project Addresses Several Problems for HHC Fuels

 Improve NOx kinetics for High-Hydrogen Fuels at Engine Conditions

2. Effect of Contaminant Species on Ignition

3. Impact of **Diluents** on Ignition Kinetics and Flame Speeds

4. Data on Turbulent Flame Speeds at Engine Pressures

Project Overview

There are Six Main Work Tasks for the Project

Work Tasks:

- Task 1 Project Management and Program Planning
- **Task 2** Turbulent Flame Speed Measurements
- **Task 3** Laminar Flame Speeds with Diluents
- **Task 4** NOx Mechanism Validation Experiments
- **Task 5** Fundamental NOx Kinetics
- Task 6 Effect of Impurities on Syngas Kinetics

Task 1 – Project Management and Program Planning

Project Participants

Dr. Olivier Mathieu

Michael Krejci

Christopher Aul

Sankar Ravi

Anthony Levacque

Andrew Vissotski

John Pemelton

Travis Sikes

Aerospace Corp: Mark Crofton, Andrea Hsu

Task 1 - Management

Interaction and Feedback from Industry Will be Important

Industrial Advisory Panel

Rolls-Royce Canada: <u>Siemens</u>:

Dr. Gilles Bourque Dr. Scott Martin

Dr. Ray Laster

General Electric: Power Systems Mfg.:

Dr. Hasan Karim Dr. Peter Stuttaford

Mr. Joel Hall Mr. Khalid Oumejjoud

- Mixture Compositions and Test Conditions
- Possible Contaminant Species
- Important, Related Aspects and Ultimate Usage of Models

Task 2 – Turbulent Flame Speed Measurements

Turbulent Flame Speed Measurement will Require Development of Techniques

- Utilize Existing Flame Speed Hardware
- Induce Turbulence Using Fans
- Similar to Bomb Experiments of Kido and Coworkers
- Coordinate with Ongoing UTSR Projects Using Other Methods

Goal: Independent Control of Length Scale and Frequency

Design Modifications for Turbulence Production are being Optimized Using a Mock-Up Rig

Rig to be Modified

- 1. Optically Accessible for PIV
- 2. Similar Geometry as AL Rig
- 3. Frees up Rig While Turbulence Generation is Optimized

Mock-Up Rig

Design of Experiments Approach is Used to Explore the Range of Fan Details

Factors Varied

- 1. Fan OD (Inches)
- 2. Number of Blades
- 3. Blade Pitch (Degrees)

Factors Held Constant

- 1. Fan Placement (Central)
- 2. Number of Fans (4)
- 3. Fan Axial Length (1.5 in)

Design of Experiments Matrix (L4):

Prototype	Fan OD	No of Blades	Blade Pitch
1	3	3	20
2	5	3	20
3	3	6	20
4	3	3	60

Fan Blade Designs Manufactured Using Rapid Prototyping

PROTOTYPE 1

PROTOTYPE 2

PROTOTYPE 3

PROTOTYPE 4

Year 2 Will Include a Finished Design and Shakedown of New Turbulent Flame Speed Capability

Complete Design Optimization Experiments

Design and Assemble New Fans for High-Pressure Rig

Characterize Turbulence Generation of New Facility

Perform Shakedown Experiments Using H₂-Air Mixtures

Task 3 – Laminar Flame Speeds with Diluents

High-H₂ Fuels with High Levels of Dilution Will be Studied

Water, CO₂, N₂, other?

Laminar Flame Speeds Using Established Methods

Utilize New Heated Vessel for Water Mixtures

Pertinent Mixtures of Interest to Industry

Original Vessel Capable of High-Pressure Tests but is Not Heated

- •Vessel ID 31.74 cm
- Internal Length 35.6 cm
- •6 cm Thick Fused Quartz Windows
- •12.7 cm Diameter Windows
- Max Test Pressure ~ 20 atm
- Minimum Safety Factor of 4

New High-Temperature High-Pressure Flame Speed Vessel is Now Operational

Design Parameters:

- Max initial pressure: 30 atm
- Max initial temperature: 600 K

Vessel Dimensions:

- Outer Dia.: 54.6 cm
- Inner Dia.: 31.8 cm
- External Length: 63.5 cm
- Internal Length: 27.9 cm
- Window Port Dia.: 12.7 cm
- Approximate Wt: 1800 lbs

HTHP Facility Infrastructure

- •5 Pressure Transducers (PT)
- •1 Thermocouple (T)
- 2 Vacuum Pumps
- 4-Piece Heating Jacket
 - Temperature Controller adjusts by 1° Increments

Z-Type Schlieren Setup Used to Obtain Flame Growth

- f/8 Mirrors. (Dia. 6 in)
- Mercury Lamp
- New Photron Fastcam SA1.1

Test Plan Includes a Series of **Baseline** Experiments with H_2 and H_2 -CO Mixtures in Air

- Pure H₂ in Air Experiments to Compare with Literature
- Core Chemical Kinetics Model Based on Work with NUI Galway
- 50:50 CO-H₂ Mixtures Tested
- Diluent Study with H₂O, CO₂ to be Based on Statistical Matrix

1-atm H₂ Results Compare Well with Model and Literature

Closer Look Shows 20+ cm/s Scatter at Lean Conditions

- Model Underpredicts by 10-20 cm/s
- 30-cm/s Variation Amongst data
- How Accurate do we Need to be?

Elevated-Temp. H₂ Results Compare Well with Model

CO-H₂ Results Have Several Studies for Comparison

Task 3 − S₁ with Diluents

Ongoing Experiments to Include H₂O Using a Design of Experiments Approach

Experiment	Temperature (K)	Pressure (atm)	% H2O (by mol)	H2:CO
1	323	1	7.5	5:95
2	323	5	0	50:50
*3	323	1	15	100:0
4	373	1	0	100:0
5	373	5	15	5:95
6	373	10	7.5	50:50
7	423	1	15	50:50
8	423	5	7.5	100:0
9	423	10	0	5:95

^{*} Pressure was changed from 10 to 1 atm due to the high water concentration

- 4 Factors with 3 Levels Each
- L-9 Taguchi Matrix
- Temperature (323, 373, 423 K)
 - Pressure (1, 5, 10 atm)
 - Water Content (0, 7.5, 15%)
 - H₂:CO Mixture (5:95, 50:50, 100:0)

Task 4 – NOx Mechanism Validation Experiments

Kinetics Mechanism Validation with NOx at Engine Conditions is being Performed

- Mechanism Based on Galway C5 Mechanism
- Initial NOx Mechanism from Recent Dagaut and Brezinsky Work
- Ignition Times with NOx Precursors for Validation (and EGR-Related)
- Species Time Histories at Dilute Conditions
- Suggest Calibrated Mechanism at End

Texas A&M High-Pressure Shock Tube

High-Pressure Shock-Tube Facility

- 1 100 atm Capability
- 600 4000 K Test Temperature
- Up to 20 ms Test Time
- 2.46 m Driver and 4.72 m Driven Sections
- 15.24 cm Driven Inner Diameter

Ignition Delay Time Experiments are used to Test NOx Mechanism with H₂ Fuel

- Ignition Delay Times with and without NO₂, N₂O
- Baseline Fuel Mixture: pure H₂
- Conditions: 1 30 atm
 - Fuel Lean
 - Dilute in Argon (98%)

Compare Mechanism to Experiment

C₄ and NO_x combined mechanism

OH* Used to Define Ignition in the Highly Dilute Experiments

Hydrogen Results Show Non-Linear Pressure Dependence

$$\phi = 0.3$$

$$\phi = 1.0$$

Results Not Very Dependent on Equivalence Ratio for Hydrogen Baseline

φ = 0.5 Chosen for Comparison with NOx Addition

Effect of NO₂ on H₂-O₂ Mixtures is Stronger at Higher Pressure

1.5 atm

Task 4 is Nearly Complete, with Current Mechanism Showing Very Good Results Overall

Sensitivity Analysis Performed (not shown)

Experiments Performed for N₂O Addition (not shown)

NOx Model for Shock-Tube Conditions is in Good Shape

 NO Formation via NNH Mechanism Still Not Validated Yet (Task 5)

Task 5 – Fundamental NOx Kinetics

Rate Coefficients Will be Measured Directly for Key Reactions in High-H₂ System

Identify Specific Reaction(s) for Study

Utilize Laser Absorption of NH (336 nm)

Requires Very Dilute Mixtures

Explore NNH Pathways for Prompt NOx

NNH Pathway Will be the Focus of the Detailed Kinetics Experiments

NNH Mechanism:

$$N_2 + H_2 \rightarrow NNH + H$$
 $N_2 + H + M \rightarrow NNH + M$
 $NNH + O \rightarrow NO + NH$
 $NNH + O_2 \rightarrow N_2O + OH$

- Few Direct Measurements
- Study will Focus on

$$N_2 + H + M \rightarrow NNH + M$$

$$NNH + O \rightarrow NO + NH$$

Second High-Pressure Shock Tube Located at Aerospace Corp.

Aerospace High Pressure Shock-Tube Facility

- 1 100 atm Capability
- 600 4000 K Test Temperature
- 3 ms Test Time
- 3.5 m Driver and 10.7 m Driven Sections
- 16.2 cm Driven Inner Diameter

Laser Absorption of NH at 336 nm Will be Targeted

Work to Date Includes Setting up and Demonstrating Laser Absorption Diagnostic

Ring-Dye Laser System in UV

Target OH at 307 nm to Demonstrate Diagnostic

Future Experiments to Move to NH (336 nm)

Kinetic and Spectroscopic Calculations for NH Underway

Tunable Laser Absorption Setup

$$\frac{I_T}{I_o} = e^{-k_v P X_{abs} L}$$

Beer-Lambert Law

 Species concentration can be found if absorption coefficient k_n is known

OH Times Histories Have Been Measured in the Shock Tube

Task 6 – Effect of Impurities on Syngas Kinetics

Trace Impurities Will be Studied Using Shock Tubes and Flame Speeds

Trace Species (H₂S, NH₃, HCN, NOx, HC fuel, other?)

Laminar Flame Speeds Using Established Methods

Dilute Shock-Tube Experiments (Ignition and Time Histories)

Pertinent Mixtures of Interest to Industry

Baseline Syngas Mixtures Have Been Selected and Tested (Ignition Delay Times)

- H₂/CO Blends as Baseline:
 - H₂/CO: 80/20, 50/50, 40/60, 20/80, 10/90
 - Pressures: 1, 10, 30 atm
 - $-\phi = 0.5$, high Argon Dilution (98%)
- Ignition Delay Times Obtained

- Target Syngas Baseline Blends:
 - Coal Blend (50:50 base + impurities)
 - Biomass Blend (40:60 base + impurities)

Ignition Data Already Obtained for Baseline Mixtures

Ongoing Test Plan for Impurities and Diluents:

Diluent Species: H₂O, CO₂

- Trace Species:
 - Biomass Syngas (CH₄, NH₃)
 - Coal Syngas (H₂S, NH₃, HCN, COS)

Summary

Progress on All 6 Tasks for 1st Year Have Been Covered

Work Tasks:

- Task 1 Project Management and Program Planning
- **Task 2** Turbulent Flame Speed Measurements
- Task 3 Laminar Flame Speeds with Diluents
- **Task 4** NOx Mechanism Validation Experiments
- Task 5 Fundamental NOx Kinetics
- Task 6 Effect of Impurities on Syngas Kinetics

Petersen Group Research

TEXAS A&M U N I V E R S I T Y